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A simple method 1s given for calculating the magnetic field compo-
nents in or around amy thick finite solenoid by superposition of fields
of semi~infinite solenoids with zero inner radius. ZEquations and graphs
are presented for the fileld éomponents of such semi-infinite solenoids.
From thése graphs, the fields for solenoids of practicel interest can be
obtained with errors of less then & few percent. Greater accuracy is
possible if numericel tebles are used instead of graphs. RvTHIT

INTRODUCTION

The megnetic field components off the exis of'a thick solenoid cannot
be calculated easlly except by electronic computers. Tables of these
fields, prepared from computer output, would often be useful, espeéially
in coil design. Such tables would eliminate further use of computers in
many cases. But the field components of a thick solenoid depend on four
variables, which are the radiel and axial coordinates of the field point
and the two parameters o« end (B needed to specify the solenoid shape,
where o = outer diameter/inner diemeter and B = léngth/inner diameter,
Tabulating this function of four continuous verisbles would requiré an un-

reasonable amount of space for complete coverage of the range of varisbles
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of common interest, although some tebles and graphe exist which partially

cover the ranges of the four varisbles, >
However, a comprehensive presentation in terms of only two vari-

ables is possible 1f a superposition method is used to find the desired

field from tebles or graphs of the field of a semi-infinite solenoid with

zero inner redius. This semi-infinite solenoid i1s defined as an axially

symmetric, uniform, azimuthal current density which extends from the axis

of a cylindrical coordinate system out to R =b &and from Z = 0 to

Z = =0 (Fige 1). It differs from ordinary solenoids in that it is semi-

infinitely long and has no cylindricsl hole. Eaéﬁ field component of this

special solenoid can be expressed nondimensionally, computed electronically,

and tebulated or graphed as a function of only two variables, the non-

dimensional field~point coordinates, r = R/b and z = Z/bs Any desired

finite solenoid 1s then treated as & superposition of four of these semi-

infinite solenoids, and any field component is cbtained by slgebraic addition

of four numbers derived from the tebles or graphs, each number corresponding

to the contribution of one semi-infinite solenoid.
SUPERPOSITION OF FOUR SEMI~INFINITE SOLENOIDS TO FORM
A FINITE SOLENOID WITH FINITE THICKNESS
Figure 2 shows how four semi-infinite solenoids of appropriste sizes

end locations can be superimposed to form & thick, finite solenoid. Curved
arrows show the dlfections of circulation of the currentss Cancellation of
oppositely directed currents occurs in many regions, leaving only the de-

sired finite solenoid.
The field of the thick, finite solenoid can be expressed in terms of the

fields of the four contributing semi-infinite solenoids in the following menner.
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Consider either the axial or the radial component of the field of the finite
solenoid. To simplify notation, no symbols will be used to distinguish
radial and axial field components; all equations in this section are valid
for either component. Iet Hi, HZ’ HS’ and H4 represent the values of the
desired fleld component which would be contributed by the four semi-infinite
solenoids marked 1, 2, 3, and 4, respectively, in Fig. 2 if each had the con-
ventional sense of current circulation. The actual fields contributed by the
solenoids numbered 2 and 4 in the figure are thus -Ho and -H,, because the
current densities have a reversed sense in these two semi-infinite solenolds.
The field of the desired thick finite solenoid 1s simply the sum of the
contributions of the four semi-infinite solenoids:
H=H ~H +H; - H, (1)
If each term is divided by the current density J (assumed to be uniform)
and by the inner radius s of the finite solenoid, & nondimensionsl expres~
sion results:
H/Js = Hy/Js - Hy/ds + Hz/Js - H,/Js
Iet the radii of the semi-infinite solenoids be called LIY Yo, bz, and by
Note that bz =by =85 and by = bp = as. Then
H/Js = aHy/Jby - aHy/dbg + Hz/Jbz - Hy/Jby

Let the nondimensional quantities such as Hy/Jby be denoted by hy, ete.
Then

H/Js = ah; - ahy, + hy - b, (2)
The quentities hl’ hz, hS’ aend h4 are the nondimensional fields of the
four semi-infinite solenoids. These nondimensional fields can be approxi-
mately evaluated by using the graphs in Figs. 3 and 4 if the proper coordi-

nate systems are used for locating the field point. The most convenient



coordinate system to use with any particular semi-infinite solenoid is a

cylindrical one with the origin at the center of the end face, It is con-
venient to nondimensionallize the radial and axial coordinates by express-
ing them in terms of the radius of the semi-infinite solenoid as a unit of
measurement. Giving each semi-infinite solenoid its own origin of coordi-
nates and unit of measurement means that the field point will have different
coordinates with respect to each of the four semi-infinite solenoids.

Fig. 2 shows the coordinate system to be used for each semil-infinite sole-
noid: (rl,zl) for solenoid 1, (rp,zp) for solenoid 2, etc. Note that the
unit of length for measuring Ty and 2z, 1s bi} for ry; and zz 1t is
bg; etc. Making these field point coordinates explicit in Eg. (2) glves

H/Js = ah(rl,zl) - ah(rz,zz) + h(rB’ZS) - h(r4,24) (3)

Equation (3), containing only nondimensional terms which are expressed
in terms of nondimensional coordinates, can be used to calculate the field
components of any solenoid of finite length and thickness from h.(r,z) and
h,(r,z). The functions hp(r,z) and h,(r,z) are the nondimensional radial
and axial components of the magnetic field intensity of the semi-infinite
solenoid, and their derivetions are sketched at the end of the paper. They
have been computed numericelly and are plotted in Figs. 3 and 4.

An example should clarify the procedure for calculating a field by us-
ing Eq. (3) and the graphs. Suppose the axial field component is desired at
the indicated field point for the finite solenoid shown in cross section in
Fige 5. The inner ra of this finlte gclencid is 5. Each corner in the

cross section is numbered and indicates the location of the circular edge

of the end plane of the semi-infinite solenoid with the same nunber in Flg. 2.



This numbering also corresponds to that of Eq. (3). Comparing Figs. 2

end 5, one cen see that r) = 0.5/2 = 0.25, rp = 0.5/2 = 0.25, rz = 0.5,

ry = 0.5, z; = -1/2 = -0.5, z5 = 3/2 = 1.5, z3

3, and z, = -1. Since
a = 2, Eg. (3) becomes

H,/Js = 2h,(0.25,-0.5) - 2h,(0.25,1.5) + h,(0.5,3) - h,(0.5,-1)

Figure 3 yields the necessary values of h,, hence

HZ/Js = 2X0.62 - 2x0.030 + 0.008 - 0.45 = 0.74
Although H/Js is a nondimensional quantity, the expressions used in
celculating hp(r,z) and h,(r,z) were derived by using rationalized mks
units, so a rationalized system of units must be used in these computations.
Supposing J = 107 amperes per square meter and s = 0.05 meter and noting
that B =y H in rationalizedvmks units results in the following for the
axial component of magnetic inductlon:
B, = podsx0.74 = 4110~ Tx107x0. 05X0. 74 = 0. 46 webers per square meter, or
4600 gauss.

Reference 1 has a table of the fields of this particular solenoid and
glves the more exact value of 0.7405 for H,/Js. The error in the above
result is fortuitously much less than 1 percent, but errors for other sole-
noids that are neither too short nor too thin will be typlcally only a few
percent if the graphs presented herein are used, However, for very short
solenoids or for very thin ones, two terms in Eq. (3) may be nearly equal
but opposite in sign, causing a loss of one or more leading digits through
on. At the end of a calculetion, it can easily be seen whether

accuracy has been lost in this way.
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For calculating fields of such short or thin solenoids or to get
greater accuracy for any solenold, a tebulaetion of the field components of
the semi-infinite solenoid 1s needed rather than graphs. Five-place tables
and larger reproductions of Figs. 3 and 4 are to be published. However,
approximate field values can be obtained from Figs. 3 and 4 for a very
wide range of the shape parameters o and p. A remarksble feature of this
method is that so much information @bout solenolds cen be presented on these
graphs and cen be handled without further use of a computer.

The field of the semi-infinite solenoid has several properties which
may be useful in calculations and some of which have been used to make
Figs. 3 and 4 more compact. These are:

(1) For z = 0 +the nondimensional axial field component h, varies
linearly from the value 0.5 on the axls to zeroat r =1, For 2z =0
and r >1 the axial field is zero.

(2) For a given value of r, the sum of the nondimensional axiasl field
components at plus 2z and at minus 2z gives twice the value for z =0
et the same r: h (r,z) + h,(r,-z) = 2h,(r,0).

(3) For r >1 the nondimensional axial fields at positive and nega-
tive values of 2z for a given radius are equal in magnitude but opposite
in sign: h,(r,z) = -h,(r,-z) for r > 1.

(4) For asny given r the nondimensional radial field components are

equal both in megnitude and in sign for positive and negative z:

| N SR | T
u.r\J.,L‘/ - ur
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CALCULATION OF THE FIELD COMPONENTS OF
<THE SEMI-INFINITE SOLENOID

let R, Z, and ¢ ©be the radial, axisl, and azimuthal coordinates
of the field point, as in Fig. 1, and let a, 1, and 6 be the coordi-
nates of the source point. The origin of the coordinate system lies at
the center of the end plane of the semi-infinite soienoid. The |
azimuthal coordinates 6 = 0 and ® = O are tsken as colncident. 'The
only nonvanishing component of the magnetic vector potential is the

azimuthael component Ay, which in rationalized mks units is

0 b b4
_ :oJ ai da a cos 6 46 7z
7
I}Z - Z)2 + R% + &% - 28R cos Q]
GO 0] 0

Then by using H = (1/ug) curl A, expressions for H, and H. can be ob-

tained. Iet & =2z - 1, then

3o) 14
J a cos O 4dg
H. = o da
r 1
ax [}? + RZ + az - 28R cos é) /2
0 0
and

0 b 7
H = J dg da a cos 9 46

7 o o [52 + R2 + 82 - 2aR cos 9:)3/2

The expression for H,. can be Integrated analytically with respect'to a,
end the expression for H, can be integrated analytically with respect to

both & and sa. If the resulting expresslons are divided by Jb and if

the nondimensional field point varisbles r =R/ and z = Z/b are sub-

stituted into the expressions, the following results:



hy.(r,z) F cos 6 46

il
=
2l
© a

1 2 -1 l-rcos 6 _ lge
+ = r cos®f sinh
Zx b [(z?‘ + ré sinze)lfz]

H
=z _1] (L -1r cos 6 + F)
hy(r,z) = S J[” [{2 z + r2)l/é]de

<
+ Zrz Bin29 de
5 (1 +r2 - 2r cos 6)F

14
re . -1{ {1 = r cos 9)121 x - -
+T;Tf 51n6'ba.n[ T d9+2(l r+[1 r[)

where F = (22 + r?2 + 1 - 2r cos 6)1/2.

These expresgions were integrated by a computer. The second integral
in hp(r,z) 1is improper for z = 0; consequently, for z =0 it was inte-
grated by perts esnalytically to avoid computer difficulties.

Five-place tables (to be published) of h,(r,z) were automatically
printed by the computer and Figs. 3 and 4 were plotted from the tables,
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Flgure Ceptions

Figs 1. Semi-infinite solenoid with zero inner radius. Current density
1s uniform, extending from axis to R =D and from Z =0 to Z = =o,
Curved arrows indicate direction of current circuletion.

Fig. 2. Formation of finite solenoid from four semi-infinite solenoids,
Curved arrows indicate directions of current circulation. Position of
typicel field point (X) is shown with respect to the desired finite
solenoid and with respect to each seml~infinite solenoid. Note thst
since nondimensional tebles or graphs are to be used, each semi-infinite
solenoid effectively has its own coordinate system, with its own radius
as the unit of length,

Figs 3. Nondimensional axiasl field of semi~infinite solenoid. Note:

For 2z negative and r > 1, no cwves are shown; for such values, use
the relation: hy(r,-z) = -hz(r,z) for r > 1.

Flg. 4. Nondimensional redial field of semi=-infinite solenoid. Note:
Values for z < O are not shown because hn(r,~z) = h.(r,z).

~Filge S« Cross section of solenoild used in example calculation, Numbered

corners correspond to locations of the edges of the end planes of the

like=-numbered semi-infinite solenoids of Fig. 2.
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Fig, 1. - The semi~infinite solenoid with zero inner radius.
Current density is uniform, extending from axis to R=b
and from Z = 0 to Z = -w. Curved arrows indicate direc-
tion of current circulation.
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Fig. 2. - Formation of finite solenoid from four semi-infinite solenoids. Curved

arrows indicate directions of current circulation. Position of typical field
point (x) is shown with respect to the desired finite solenoid and with respect
to each semi-infinite solenvid. Note that since non-dimensional tables or graphs
are to be used, each semi-~infinite solenoid effectively has its own coordinate
system, with its own radius as the unit of length.
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Fig. 4. - Non-dimensional radial fleld of a semi-infinite
s

Note:
hr(r,z).
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Values for z < O are not shown, because
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Fig. 5. - Cross section of solenoid used in example calculation.
Numbered corners correspond to locations of the edges of the
end planes of the like-numbered semi-infinite solenoids of
Fig. 2.



